Corrosion Properties of Cold-Sprayed Coatings

Heli Koivuluoto

Tampere University of Technology
Department of Materials Science
Laboratory of Surface Engineering
Tampere, Finland

NACSC 2014, Bromont, Quebec, Canada
Acknowledgements

Prof. Petri Vuoristo
M.Sc.(Eng.) Andrea Milanti
Tampere University of Technology,
Department of Materials Science, Tampere, Finland

M.Sc.(Eng.) Jyrki Latokartano
Tampere University of Technology, Department of Mechanical
Engineering and Industrial Systems, Tampere, Finland

Prof. Luca Lusvarghi
Dr. Giovanni Bolelli
University of Modena and Reggio Emilia,
Department of Engineering “Enzo Ferrari”, Modena, Italy
Presentation outline

- Cold spraying at TUT
- Denseness improvement
- Corrosion properties of cold-sprayed Ta, Ni, Cu, NiCr, NiCu, NiCr+Al₂O₃, NiCu+Al₂O₃ coatings
- Laser-assisted cold spraying
- Summary
Cold spraying at TUT

Cold spray research
- Focus points: materials, structures, corrosion resistance, functional properties and affecting factors
- International collaboration: e.g., Germany, France, Italy, UK, Spain

Equipment
- High-pressure cold spray system
 Kinetiks 3000 (700°C, 30 bar)
- Kinetiks 4000 in collaboration with Linde (Germany)
- Low-pressure cold spray system
 DYMET 403K (650°C, 9 bar)
- Laser-assisted cold spray
Denseness improvement

1. Optimized powder - spray parameter combination
 - E.g., HPCS Cu, Ta and Ni coatings
 - Powder characteristics → tailored powders
 - Higher preheating temperatures and effectiveness

2. Hard particle addition to densify metallic structures
 - E.g., HPCS NiCr+Al$_2$O$_3$, NiCr+WC-Co-Cr and NiCu+Al$_2$O$_3$ coatings
 - E.g., LPCS Cu+Al$_2$O$_3$ coatings
 - Three functions: 1) Keep the nozzle clean, 2) Activate the sprayed surface and 3) Hammer the coating structure

3. Heat treatments as post-treatments
 - E.g., HPCS Ni and NiCu coatings
Coating materials selected

1. **Ta:** Tantalum has extraordinary corrosion resistance in acids, salts, and organic chemicals even at elevated temperatures

2. **Cu:** Corrosion resistant against e.g., general atmospheric exposure, seawater, waters, dilute sulfuric, phosphoric and acetic acids

3. **Ni:** Pure nickel has excellent resistance to aqueous corrosion, organic salts, alkalines and in particular to caustic soda

4. **NiCu:** Monel alloys has good corrosion resistance in seawater, sulfuric, hydrochloric and hydrofluoric acids

These materials give the anodic protection to steel substrate (coating material is nobler than substrate)

→ Corrosion protection based on passivity (formation of protective layer on the coating surface)

→ Coatings have to be dense and impermeable in order to act as real corrosion barrier coatings
Cold spray parameters

- Process gas: N\(_2\), coating layers: 2
- Heat-treatments: 600°C, 2 h, in protective atmosphere

Kinetiks 4000 (HPCS)

<table>
<thead>
<tr>
<th></th>
<th>Ta</th>
<th>Cu</th>
<th>Ni</th>
<th>NiCu</th>
<th>NiCu+Al(_2)O(_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°C)</td>
<td>800</td>
<td>490</td>
<td>700</td>
<td>650</td>
<td>750</td>
</tr>
<tr>
<td>Pressure (bar)</td>
<td>38</td>
<td>32</td>
<td>40</td>
<td>39</td>
<td>38</td>
</tr>
<tr>
<td>Spray distance (mm)</td>
<td>40</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>Beam distance (mm)</td>
<td>1.5</td>
<td>1.5</td>
<td>1</td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td>Traverse speed (m/min)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

![Images of Ta, Cu, Ni, NiCu, NiCu+Al\(_2\)O\(_3\)](image)
Denseness improvement
Optimized powder - spray parameter combination

Dense coating structure
- Highly plastically deformed structure
- Metal-metal bonding
- Adiabatic shear instability and material jets
Dense coatings

Impermeable microstructure of HPCS Ni, Cu and Ta coatings → open-cell potential is close to the bulk material behavior
Corrosion properties of HPCS Ta

HPCS Ta coating behaved like corresponding Ta bulk material in 3.5% NaCl and 40% H$_2$SO$_4$ solutions \rightarrow similar corrosion resistance \rightarrow rapid passivation \rightarrow corrosion protection

HPCS Ta coating behaved like corresponding Ta bulk material also in 20% HCl solution, however, passivation was first linear, then curving slightly and followed again linear behavior \rightarrow repassivation

Koivuluoto et al., J. Therm. Spray Technol., 18(1)2009, 75-82
Corrosion properties of HPCS Ta

Nyquist plots: CS Ta has significantly higher values than IPS Ta

Electrochemical impedance spectra:
Applying voltage perturbation amplitude of ±50 mV over frequency range of 100 kHz – 10 mHz (7 points/decade)

<table>
<thead>
<tr>
<th></th>
<th>R_S (Ω)</th>
<th>R_C (Ω)</th>
<th>R_{CT} (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPS Ta</td>
<td>3.8</td>
<td>36.10</td>
<td>6870</td>
</tr>
<tr>
<td>CS Ta</td>
<td>3.8</td>
<td>2083</td>
<td>674000</td>
</tr>
</tbody>
</table>

IPS coating is more porous \rightarrow lower R_C
Pores and weak lamellar boundaries cause extensive electrolyte (1M KOH) penetration

Low R_{CT} \rightarrow system is not behaving as capacitor and charge transfer reaction is going on: part of active dissolution is presumably involving substrate

Very high R_{CT} \rightarrow System is perfectly passive, behaves as capacitor

CS coatings are dense (no through-porosity) \rightarrow much larger R_C

Hot corrosion/oxidation test

- 24 x 24 mm samples (low-C steel substrate) were sprayed with ~10 mg/cm² of Na₂SO₄ / NaCl aqueous solution.
- Samples left at 705 °C for 24 h.

Corrosion properties of HPCS Ni

The polarization behavior of as-sprayed and heat-treated HPCS Ni coatings and Ni bulk material

- The polarization behavior of Ni coatings is remarkably close to that of bulk Ni in all solutions → Indicating similar corrosion resistance

Denseness improvement
Hard particle addition

Structure of HPCS Ni20Cr coating
➔ open boundaries

Structure of HPCS Ni20Cr+50Al₂O₃ coating
➔ without noticeable pores
Effect of spray parameters:
Higher preheating temperature

Effect of feedstock:
Hard particle addition
Corrosion resistance of HPCS NiCu

<table>
<thead>
<tr>
<th>Sample</th>
<th>Test solution</th>
<th>E_{corr} (mV)</th>
<th>I_{corr} (μA/cm2)</th>
<th>R_p (kΩcm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NiCu bulk</td>
<td>NaCl</td>
<td>-117</td>
<td>0.766</td>
<td>26.10</td>
</tr>
<tr>
<td>NiCu_Al$_2$O$_3$ (AS)</td>
<td>NaCl</td>
<td>-206</td>
<td>0.711</td>
<td>20.02</td>
</tr>
<tr>
<td>NiCu_Al$_2$O$_3$ (HT)</td>
<td>NaCl</td>
<td>-202</td>
<td>1.35</td>
<td>16.04</td>
</tr>
<tr>
<td>NiCu1(AS)</td>
<td>NaCl</td>
<td>-252</td>
<td>3.35</td>
<td>18.69</td>
</tr>
<tr>
<td>NiCu bulk</td>
<td>H$_2$SO$_4$</td>
<td>21</td>
<td>9.26</td>
<td>1.76</td>
</tr>
<tr>
<td>NiCu_Al$_2$O$_3$ (AS)</td>
<td>H$_2$SO$_4$</td>
<td>20</td>
<td>8.39</td>
<td>1.87</td>
</tr>
<tr>
<td>NiCu_Al$_2$O$_3$ (HT)</td>
<td>H$_2$SO$_4$</td>
<td>17</td>
<td>11.0</td>
<td>1.21</td>
</tr>
<tr>
<td>NiCu1(HT)</td>
<td>H$_2$SO$_4$</td>
<td>21</td>
<td>14.9</td>
<td>0.94</td>
</tr>
<tr>
<td>NiCu bulk</td>
<td>HCl</td>
<td>-96</td>
<td>6.69</td>
<td>4.18</td>
</tr>
<tr>
<td>NiCu_Al$_2$O$_3$ (HT)</td>
<td>HCl</td>
<td>-173</td>
<td>5.72</td>
<td>4.83</td>
</tr>
<tr>
<td>NiCu1(HT)</td>
<td>HCl</td>
<td>-193</td>
<td>8.62</td>
<td>2.38</td>
</tr>
</tbody>
</table>

Polarization resistance R_p was calculated by using Stearn-Geary equation ($I_{corr}=B/R_p$)

Corrodkote results: HPCS NiCu

Corrodkote test
- About 100 times more accelerated than salt spray test
- A thick corrosive suspension (copper-nitrate and ferric and ammonium chlorides in a clay water matrix) is uniformly spread on to the surface
- The sample is kept for 80 h (cycles of 20 h) at 38 °C, 85% relative humidity
- Test were done at UNIMORE

Heat-treated sample (HT)
Tighter inter-lamellar boundaries
→ Lower interface corrosion

After 80 h

Corrodkote results: HPCS NiCu+Al$_2$O$_3$

Cavitation erosion wear (ASTM G32)

$$MDE(\mu m) = \frac{10 \Delta W}{\rho A}$$

$$\Delta W = \text{weight loss}$$
$$A = \text{worn area}$$
$$\rho = \text{density of material}$$

$$R_e(h/\mu m) = 1/(\text{SER})$$

SER = steady erosion rate

- Improved deposit qualities
- Higher performance deposits
- Increased corrosion resistance
- Improved cost effectiveness
LACS Ni20Cr coatings

Slow traverse speed, 3 m/min

Improvements with laser:
- Increased coating thickness → Improved DE
- Higher deformation level 100% > 50% > 0%
- Less oxidized particle boundaries 100% < 50% < 0%
LACS Cu10Sn coatings

L0_deF L0_F

L100_deF L100_F

LACS Cu10Sn coatings: less oxidized structures
- Power 0% improvement 100%
- Laser beam in defocus improvement in focus
LACS Cu10Sn coatings

Denseness improvement by using laser-assisted cold spray process (L100_F)

ACKNOWLEDGEMENTS: The research leading to these results has received funding from the European Community’s Seventh Framework Program (FP7/2007-2013) for the Research for SMEs Initiative under grant agreement no. 315157.
Summary

- Cold spraying enables the production of fully dense coatings
- Strongly deformed and tightly bonded structures as dominant microstructures → High quality coatings
- Four ways for denseness improvement:
 - Optimized powder – spray parameter combination
 - Addition of hard particles to metallic powder
 - Heat-treatments
 - Laser-assisted cold spraying
- Cold-sprayed Ta coatings have very good corrosion properties: high protectiveness in several environments, gas-tight structure, passivity behavior and excellent passivation stability
- More ductile structure of heat-treated NiCu coatings → Higher cavitation erosion resistance
- Improved corrosion protection and high performance of HPCS Ta, Ni and NiCu coatings → Potential to use as real corrosion barrier coatings!
Thank you for your attention!

Contact information:
Dr. Heli Koivuluoto
Senior Research Fellow
Tampere University of Technology
Department of Materials Science
Tampere, Finland
Email: heli.koivuluoto(a)tut.fi